A course syllabus is not the same as a course outline. A course syllabus outlines the general requirements for a course. A course outline is the specific document created by the individual faculty member to distribute to a specific course section. This is an “abbreviated” course syllabus because it is only collecting information on the course number, title, description, and learning outcomes. Please submit this completed form electronically to Dean Britton.

PLEASE NOTE: Any changes made to the Course Number, Title, or Catalog Description must go through the regular faculty governance process. This Expedited Process of Approval, which expires in March 2012, only pertains to approval of the Learning Outcomes. Therefore, this is NOT the form to be used to change course numbers, titles, or descriptions. This is NOT the form to use for proposing a new course. (See the Governance website for those types of proposals.)

I. Course Number and Title:

MET102 – Principles of World Climate

II. Catalog Description:

Introduction to distribution and causes of world climatic regions. Examines regional surface-atmosphere interactions that determine local climate. Major climate system phenomena discussed including global warming, ozone depletion, earth-sun relations and climate evolution. (3 hrs. lecture, 2 hrs. laboratory.) Offered on: A-E / 4 cr. hrs.

4.000 Credit Hours
3.000 Lecture hours
2.000 Lab hours

III. *Learning Outcomes: (Main concepts, principles, and skills you want students to learn from this course) The Learning Outcomes listed here should be considered the minimum core outcomes for the course. Many other learning outcomes may also be a part of the learning experience within the course.

Upon completion of this course, students will be able to:

• Navigate the Internet World-Wide Web for research purposes and laboratory assignments.
• Use the metric system of measurement, interpret graphical analyses, and do simple statistical analysis.
• Find locations using latitude and longitude coordinates.
• Determine and analyze atmospheric temperatures, pressure, density, and wind.
• Predict past climate using indicators such as oxygen isotopes, pollen, dust, carbon-dating, etc.
• Determine and analyze historical evidence showing climate change on the tectonic scale (millions of years.)
• Determine and analyze historical evidence showing climate change on the orbital scale (tens of thousands of years.)

*These statements must appear verbatim in course outlines. However, additional outcomes may be added to individual course outlines at the instructor’s discretion.

Revised 1/10
• Demonstrate the cause and effect relationship between climate and carbon-cycling in the earth-atmosphere system.
• Demonstrate the cause and effect relationship between climate and glaciations.
• Demonstrate the influence of humans on climate.
• Predict the climate change in the next 100 to 1000 years.

*** *******
Name of Discipline Lead:______________________________

Discipline Vote:
For_________ Against_________ Abstention_________

Date of Vote:_________
_(Initial and Date)_________ Certification of Vote by AVP of Academic Affairs
_(Initial and Date)_________ Certification of Vote by College Curriculum Chair

*These statements must appear verbatim in course outlines. However, additional outcomes may be added to individual course outlines at the instructor's discretion.

Revised 1/10