SUFFOLK COUNTY COMMUNITY COLLEGE
ABBREVIATED
COLLEGE COURSE SYLLABUS FORM

A course syllabus is not the same as a course outline. A course syllabus outlines the general requirements for a course. A course outline is the specific document created by the individual faculty member to distribute to a specific course section. This is an "abbreviated" course syllabus because it is only collecting information on the course number, title, description, and learning outcomes. Please submit this completed form electronically to Dean Britton.

PLEASE NOTE: Any changes made to the Course Number, Title, or Catalog Description must go through the regular faculty governance process. This Expedited Process of Approval, which expires in March 2012, only pertains to approval of the Learning Outcomes. Therefore, this is NOT the form to be used to change course numbers, titles, or descriptions. This is NOT the form to use for proposing a new course. (See the Governance website for those types of proposals.)

I. Course Number and Title:
AST201 – Observational Astronomy

II. Catalog Description:
One-semester course devoted to systematic observations of the sun, moon, transits, eclipses, occultations and meteor showers. Various telescopes used for this study and for further study of planets, deep sky objects, binary stars, variable stars and asteroids. To best complete the course work, irregular hours of observations, planetarium sessions and field trips are required. Offered on: A / 4 cr. hrs.
4.000 Credit Hours
3.000 Lecture hours
2.000 Lab hours

III. *Learning Outcomes: (Main concepts, principles, and skills you want students to learn from this course) The Learning Outcomes listed here should be considered the minimum core outcomes for the course. Many other learning outcomes may also be a part of the learning experience within the course.

Upon completion of this course, students will be able to:

1. Explain the principles of observational techniques and astronomical detectors.
2. Solve problems involving topics found in the syllabus.
3. Select appropriate techniques and detectors for a variety of observational programs.
4. Extract and summarize relevant information from a given text or case study.
5. Carry out a variety of quantitative observing techniques at optical wavelengths.
6. Record, analyze, present and report astronomical data with the aid of suitable IT packages.

*These statements must appear verbatim in course outlines. However, additional outcomes may be added to individual course outlines at the instructor's discretion.

Revised 1/10
These statements must appear verbatim in course outlines. However, additional outcomes may be added to individual course outlines at the instructor’s discretion.

Revised 1/10